Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Omega ; 4(24): 20665-20671, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31858052

RESUMO

The relative stability constants of Tb(III) complexes exhibiting binding to a series of 4-substituted analogues of dipicolinic acid (2,6-pyridinedicarboxylic acid) (DPA) were calculated using density functional theory (DFT) with the standard thermodynamic cycle. DFT calculations showed that the strengths of the stability constants were modified by the substituents in the following (decreasing) order: -NH2 > -OH ∼ -CH2OH > -imidazole ∼ -Cl ∼ -Br ∼ -H > -F > -I, with the differences among them falling within one to two log units except for -NH2. Through population and structural analysis, we observed that the -NH2, -OH, -CH2OH, and halide substituents can donate electrons via resonance effect to the pyridine ring of DPA while inductively withdrawing electrons with different strengths, thus resulting in the different binding strengths of the 4-substituted DPAs to the Tb(III) ions. We believe that these observations possess utility not only in the ongoing development of luminescent probes for bioanalytical studies but also for more recent cross-industrial efforts to enhance reservoir surveillance capabilities using chemical tracers within the oil and gas sector.

3.
ACS Appl Mater Interfaces ; 9(15): 13111-13120, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28291944

RESUMO

Environmental tracing applications require materials that can be detected in complex fluids composed of multiple phases and contaminants. Moreover, large libraries of tracers are necessary in order to mitigate memory effects and to deploy multiple tracers simultaneously in complex oil fields. Herein, we disclose a novel approach based on the thermal decomposition of polymeric nanoparticles comprised of styrenic and methacrylic monomers. Polymeric nanoparticles derived from these monomers cleanly decompose into their constituent monomers at elevated temperatures, thereby maximizing atom economy wherein the entire nanoparticle mass contributes to the generation of detectable units. A total of ten unique single monomer particles and three dual-monomer particles were synthesized using semicontinuous monomer starved addition polymerization. The pyrolysis gas chromatography-flame ionization detection/mass spectrometry (GC-FID/MS) behavior of these particles was studied using high-pressure mass spectrometry. The programmable nature of our methodology permits simultaneous removal of contaminants and subsequent identification and quantification in a single analytical step.

4.
Sci Rep ; 6: 28553, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27334145

RESUMO

Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca(2+) ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions.


Assuntos
Carboidratos/química , Íons/química , Cálcio/química , Cloreto de Cálcio/química , Coloides/química , Dextranos/química , Eletrólitos/química , Cloreto de Magnésio/química , Nanopartículas/química , Propriedades de Superfície , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...